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1. INTRODUCTION

Let A = {1, x™, x%,..., x'=} where the A, are positive numbers satisfying
the growth condition A; > 2k. We seek to estimate the degree of approxi-
mation possible to functions in the spaces L7[0, 1], 1 < p < 2, by poly-
nomials in the span [41] of 4. To be more precise, we introduce the following
sequence of definitions:

Ly = L7[0, 1],
1 1, is the usual L? norm of a function fe L7,
Wilfi 8) = sup [f(x + 1) = f9)ly

Sy == e Lo f [, < 13,

— inllFf— Ol
max min [/ — Qlis -
In short, S, represents a class of smooth functions in L?, and I, measures the
degree of approximation possible to functions in §,. S, may be called a
“fundamental class,” and 7, the L? approximation index by virtue of the
following proposition.

1 This paper is part of the author’s doctoral dissertation at Yeshiva University.
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ProPOSITION.  Suppose I, << v. Then, for any f € L?, there exists a function
Q € [A) such that

1 — Qlly, < 2W(fi ).
Proof. See [2].

Our goal, then, is to estimate 7, .

We note first that the analogous problem has been completely solved in the
L7 spaces, 2 < p << co. (L* denotes the space of continuous functions
C[0, 1] with the uniform norm.) The result there is:

THEOREM. For all p,2 < p < o,

Be < I, < Ae, ¢))

where A and B are absolute positive constants and

€ = exp (—2 Y )\L)
k=1 'k
Proof. See [2].

Unfortunately, the problem at hand does not seem to be solvable by any
“‘duality principle.” Furthermore, the methods used in [2] involve certain
inequalities which are applicable only in the cases p = 2. Nevertheless, our
conjecture is that (1) holds for all p; the results contained in this paper show
that 7, is, in any case, “roughly speaking” . We will prove, namely:

THEOREM 1. For all p, 1 << p << 2, Bef/llog € |32 << I, < Ae| loge|'/?,
where A and B are absolute positive constants and € = (—2 Y4, (1/A,) as
before.

The approach used to obtain the upper bound in Theorem 1 is a combi-
nation of estimates contained in [2] and the straightforward evaluation of a
critical contour integral. To obtain the lower bound, we use a very elementary
and direct approach: we exhibit a function f,, (in fact, a monomial) in each
class S, which cannot be approximated better than the stated lower bound.

2. AN UrpPER BoUND FOR 1,

In this section, || f]l, will denote the L? norm on [0, o), unless otherwise
specified. Let H € L]0, ), g = p/(p — 1) with || H|l; < 1 and such that

F(z) = fow e H(x)dx =0 for z=2A; + }) , k=1,2,.., n
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Define
B 17 X 6”11:(2) 4 p—4 —4 p—1y--1
Ky = g [ S (= 2R = ptRo) e,
where C ={ z = R:Rez 220}, R = (ee!"})? and e is as above. The

following upper bound was derived in [2]:
Forallp,1 <p < w

I, < Aye + A4, Sl}l(p 1 e K1)y » (2)

where the latter norm may be evaluated on the subinterval [0, | log(6¢)|]. We
wish to prove

ProposiTION 1. Forallp, 1 < p < 2,1, < Ae|loge |V/7.

By (2), it suffices to show
le'K(Nl, on  [0,]log(6e)l] < Ae|loge['/?

for some constant 4. Towards that end, we record three lemmas, the first
two of which were proven in [2].

LemMA 1. Leta, = A, + 1/p, B(z) = [Tp_y (ax — 2)/(ay + 2), the Blaschke
product with zeros a,, . Then | B(z)| << 2(e%/%¢ | z [)Re=.

LemMMA 2. ForallX =>0,C ={z| = R, Rez = 0}
1 PY
gl

LemMa 3. Again, let R = (ee!™1)~L,

<z
R 1 1°

e~z)\

(1 — z'RY dz l

I, <

Proof of Lemma 3. While we need only consider ¢ > 2, we will prove the
lemma for all g, 1 << g << co. This will follow from the special cases ¢ = 1
and ¢ = oo. For ¢ = 1, we have

- et dt f et dt
Ty (eetyE L1 (e€)~ + e

T,

= -5~ €€.

et dt 2
f (ee) L it 2
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For g = oo,
t_ﬁ
2

H R 1 H - ” (e)2 + e
by straightforward differentiation. Thus the lemma is proven.

Proof of Proposition 1. We first consider F(z) = [y e~*=H(x) dx. Let
z = u + iv, by Holder’s Inequality

» 00 1/p
| F(z)] < (J e~ pux dx) < ul/r,
0
If we restrict ourselves, then, to {| z| = R: Re z > &} and recall
Fa)=F (M +3) =0, k=12..n
p

we can use the usual Blaschke estimates to show

F(z) . s
B(2) <8 1/D/R{;Izl£5 | B(2)], where B(z) = ,El a: —.

But clearly

. n 28
inf | B(z)| = ,HlakJrS 1]( m)

By the standard technique equating products of the form #(1 — o) with
exponentials exp(—Y ), we have

inf | B(z)| > Az exp (— 28221;71@)

> A, exp (—28 Y }\Lk)
= A,
Hence
| F(2)l < 45786777 | B(2)],
and by Lemma 1, we have
| F2)| < A0 %e~%(e e | z |)Re%
Setting 6 = 1/] log € |, we obtain

| F(z)] < A5 | log € |2/? (e3/% | z |)R®* aslongas Rez > Tog <] " (3)
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Finally, we turn to K(¢). Clearly,

| K(D)] < 7‘; J‘C ,_ (I — SR - p 2R dz |,

Furthermore, since 1 << | log(6¢),, R > 2 so that

l 2

| — ptR* 1 <2 and << -,
| P ' z—1lpl "z

Hence,

K@) < = | \w(l — 2R dz .
m Jeo Z

In order to further estimate K(¢), we split the contour C into

, . 1 {
o} — R- ey ! =
Cl — g; < ] R. Re V' U P }]l l s and Cz C Cl .

We have, integrating over C, ,

lefc

<A5§10g€|1/pj

EFE) (| apey g |
z |

1

(63/46 l z [)Rez ert

(1 — 2R dz‘ by (3).

c, Z
But |z | = R = (ee!*)7, hence
h< dgtlog e | |5 — 2R ds |
Cy
and
{ log e it/? b
Jy < Aqg RC1 y Lemma 2. 4)
Over C,, we set z = Re®®so that | | — z*R*| = 4 |sin 0 | cos 8, and we
use the fact that | F(z)] < u™'/? == | Rcos 8 |[71/? to obtain
- zt
B={ [FED 0 zary i
Ce

rm /2 ptRCOSE ~yg [ sin g

i — -1
<% Jel (Roos gyr @ with 8, = sec™((log € | R)

Setting cos § = s,

({logel R) =1
J, <8 f eRtsg(Rs)-1/? ds.

0
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Now, Rs << 1/|loge| and if we reinvoke the condition ¢ << —log(6e) <
| log € |, we have Rts < 1| and

(1loge| RY™1
Jy < A; f sUAR-1/P g,
V]

Considering, then, the maximum of the integrand and the length of the
interval gives

A
S < Tog e v o = Ae 2
Finally, | K(1)| < J; -+ J,, so that by (4) and (5), we have

|log € [1/? et

[e—tK(t)| < AG Rz + 1

-+ Age?el.
Taking the L2 norm of the above (restricting ourselves to [0, | log(6e)!}), we

have
‘ —{— ABG (fllogGEi ot dt)l/!l.
0

Hence, by Lemma 3 and direct integration, we have

e ' K(Dll, < A4 | log € [V/7

R2+1

e K@)y < Ayoll log € [1/? € + €]
< Ae|loge |V,

and the proof is complete.

3. A Lower BOUND FOR I,

Throughout this section, we will find it necessary to modify 4 by translating
the exponents or adding a single monomial. Hence, we introduce the following
notation:

A A A
Aa = {la X 1+a’ X 2+a,”.’ X ,,+a}’

Al = {1, 2, X7, xM
We also define d,(f, ) to be the L? distance of the function f to the space [A1]:

d(f, ) = dnf [ f = Q1
where || ||, here and throughout the rest of the paper will denote the usual L?
norm on [0, 1]. Using the above notation, we will prove the following key
lemmas.
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LeMmA I. Suppose O << & < L. Then there exist positive constants A, and
A, such that

Ayt 212, ) = Apel e (A)

dy(x1 20, AN = A8 aslongas a = —1, 'A—4—~6&8] 8. (B)

LemMA 2. Leta > 0, « = 1/| log e |. Then there exists A > 0 such that

d (e, AY = A aslongas 'b— 1 — a| = a.

&
| log € |3/2
Proof of Lemma 1. First of all, an exact formula for dy(x", 4) is given by

N kG
(N + 1)V2N + 1

M — N
)\7L+N+l

dy(xN, A) — j (e.g., see [1], p. 20). (6)

Setting N == % + & and replacing the above product with the appropriate
exponential, we have

dy(x'20, A) > Ayexp (=23 (1 + 8/ + § + 9))
= Aqetd,

This proves (A). Furthermore, considering (6) once again with N = 1 +§
and translating the A, by a, we see that the only possible smaller factor
introduced is

ANA+a— 3

Al “+ a -+ % + 8

But A, > 2,a > —1 and 6 < %, hence

Mta—t-8 1}
Mtatites T it

Finally, adding the single monomial x* to A introduces a factor of

A3 —38

P R A

by hypothesis. Hence the lemma is proven.

Proof of Lemma 2. Suppose || x+% — Q(x)|lo << m where Q(x)e 4.2,
a>0,|b—1—38]| > 8. Then

m2

1= [ 15— 00y < < 55
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But
1= [ @ - 0t ax > [, AP
o
> A8%2t% by Lemma 1.

Hence,

1

~ §3/2¢1+28 ; oy
m = 83/% and setting o « Tog e

gives the result.
For later purposes, we note that setting 8 = 2« would yield

1+20¢ 3 —
A, A0) > A

as long as the appropriate condition | & — 1 — 2a | = « is satisfied.
We are now ready to prove

PROPOSITION 2.

€

b= 4 Tiog e

(A")

€

Forallp 21, I, > Ay p -

(B")
Proof of (A).

Let « = 1/|loge| as above. We use the fact that x*<S, and hence
L = di(x~, A).

Suppose then that | x* — p(x)ll; << m. Let I(x) = | jo [t — p(t)] dt |, then
for all x € [0, 1], I{(x) < jo | t* — p(®)| dt < m. But for some x,

I(x) = | x¥* — Q)| = doo(x*te, Ay

W by Lemma 2.

A consideration of the two inequalities, then, proves (A’).
Proof of (B').

Here we use the fact that f,, = Lal/Px/7t« e S, where « is as before and
g = p/(p — 1) is the conjugate of p. Let us assume then that

[| xtere — Q) < m



226 BAK AND NEWMAN

Then
. 1/g+a _ }
I(X‘) _ 1 J [t /ﬁ Q(t)] dt ’ =0 plive Q !;p . g: a1 q

rJ. Ja—n
0
by Holder’s Inequality

< om o xe,

But for some x,

xlt2o Q*(x) 20 o
1) = | g | 2 e 4D,

By the note following Lemma 2, then, we have

€

m > Aot —S
- | log € |32

Since d,(f, , A) = (a/?/2) d (x>, 1) we have

€ €

1/p+1/ =
dm(fpa/l) = Aal/Prl 110g€l3/2 %! 110g€l5/2

and the proof is complete.
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