Müntz-Jackson Theorems in $L^{p}, p<2$

Joseph Bak ${ }^{1}$
Department of Mathematics, City College, New York, N. Y. 10031

AND

Donald J. Newman ${ }^{2}$

Belfer Graduate School of Science, Yeshiva University, New York, N. Y. 10033
Communicated by Oved Shisha

1. Introduction

Let $A=\left\{1, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots, x^{\lambda_{n}}\right\}$ where the λ_{k} are positive numbers satisfying the growth condition $\lambda_{k} \geqslant 2 k$. We seek to estimate the degree of approximation possible to functions in the spaces $L^{p}[0,1], 1 \leqslant p<2$, by polynomials in the span $[\Lambda]$ of Λ. To be more precise, we introduce the following sequence of definitions:

$$
L^{p}=L^{p}[0,1]
$$

$\|f\|_{D}$ is the usual L^{p} norm of a function $f \in L^{p}$,

$$
\begin{aligned}
W_{p}(f ; \delta) & =\sup _{|h| \leqslant \delta} \| f(x+h)-\left.f(x)\right|_{p}, \\
S_{p} & =\left\{f \in L^{p}:\left\|f^{\prime}\right\|_{p} \leqslant 1\right\}, \\
I_{p} & =\max _{f \in S_{p}} \min _{Q \in[A]}\|f-Q\|_{p} .
\end{aligned}
$$

In short, S_{p} represents a class of smooth functions in L^{p}, and I_{p} measures the degree of approximation possible to functions in S_{p}. S_{p} may be called a "fundamental class," and I_{p} the L^{p} approximation index by virtue of the following proposition.

[^0]Proposition. Suppose $I_{p} \leqslant \eta$. Then, for any $f \in L^{p}$, there exists a function $Q \in[\Lambda]$ such that

$$
\|f-Q\|_{n} \leqslant 2 W_{p}(f ; \eta)
$$

Proof. See [2].
Our goal, then, is to estimate I_{y}.
We note first that the analogous problem has been completely solved in the L^{p} spaces, $2 \leqslant p \leqslant \infty$. (L^{∞} denotes the space of continuous functions $C[0,1]$ with the uniform norm.) The result there is:

Theorem. For all $p, 2 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
B \epsilon \leqslant I_{p} \leqslant A \epsilon \tag{1}
\end{equation*}
$$

where A and B are absolute positive constants and

$$
\epsilon=\exp \left(-2 \sum_{k=1}^{n} \frac{1}{\lambda_{k}}\right)
$$

Proof. See [2].
Unfortunately, the problem at hand does not seem to be solvable by any "duality principle." Furthermore, the methods used in [2] involve certain inequalities which are applicable only in the cases $p \geqslant 2$. Nevertheless, our conjecture is that (1) holds for all p; the results contained in this paper show that I_{p} is, in any case, "roughly speaking" ϵ. We will prove, namely:

Theorem 1. For all $p, 1 \leqslant p<2, B \epsilon /|\log \epsilon|^{5 / 2}<I_{p} \leqslant A \epsilon|\log \epsilon|^{1 / p}$, where A and B are absolute positive constants and $\epsilon=\left(-2 \sum_{k=1}^{n}\left(1 / \lambda_{k}\right)\right)$ as before.

The approach used to obtain the upper bound in Theorem 1 is a combination of estimates contained in [2] and the straightforward evaluation of a critical contour integral. To obtain the lower bound, we use a very elementary and direct approach: we exhibit a function f_{p} (in fact, a monomial) in each class S_{p} which cannot be approximated better than the stated lower bound.

2. An Upper Bound for I_{p}

In this section, $\|f\|_{q}$ will denote the L^{q} norm on [$0, \infty$), unless otherwise specified. Let $H \in L^{q}[0, \infty), q=p /(p-1)$ with $\|H\|_{q} \leqslant 1$ and such that

$$
F(z)=\int_{0}^{\infty} e^{-z x} H(x) d x=0 \quad \text { for } \quad z=\lambda_{k}+\frac{1}{p}, \quad k=1,2, \ldots, n
$$

Define

$$
K(t)=\frac{1}{2 \pi i} \int_{C} \frac{e^{z t} F(z)}{z-1 / p}\left(1-z^{4} R^{-4}\right)\left(1-p^{-4} R^{-4}\right)^{-1} d z
$$

where $C=\{z=R$: $\operatorname{Re} z \geqslant 0\}, R=\left(\epsilon e^{t+1}\right)^{-1}$ and ϵ is as above. The following upper bound was derived in [2]:

For all $p, 1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
I_{p} \leqslant A_{1} \epsilon+A_{2} \sup _{K}\left\|e^{-t} K(t)\right\|_{q}, \tag{2}
\end{equation*}
$$

where the latter norm may be evaluated on the subinterval $[0,|\log (6 \epsilon)|]$. We wish to prove

Proposition 1. For all $p, 1 \leqslant p<2, I_{p} \leqslant A \epsilon|\log \epsilon|^{1 / p}$.
By (2), it suffices to show

$$
\left\|e^{-t} K(t)\right\|_{q} \quad \text { on } \quad[0,|\log (6 \epsilon)|] \leqslant A \epsilon|\log \epsilon|^{1 / p}
$$

for some constant A. Towards that end, we record three lemmas, the first two of which were proven in [2].

Lemma 1. Let $a_{k}=\lambda_{k}+1 / p, B(z)=\prod_{k=1}^{n}\left(a_{k}-z\right) /\left(a_{k}+z\right)$, the Blaschke product with zeros a_{k}. Then $|B(z)| \leqslant 2\left(e^{3 / 4} \epsilon|z|\right)^{R e z}$.

Lemma 2. For all $\lambda \geqslant 0, C=\{|z|=R, \operatorname{Re} z \geqslant 0\}$

$$
\frac{1}{2 \pi} \int_{C}\left|\frac{e^{-z \lambda}}{z}\left(1-z^{4} R^{-4}\right) d z\right| \leqslant \frac{2}{R^{2} \lambda^{2}+1}
$$

Lemma 3. Again, let $R=\left(\epsilon e^{t+1}\right)^{-1}$.

$$
\left\|\frac{e^{-t}}{R^{2}+1}\right\|_{q} \leqslant 6 \epsilon
$$

Proof of Lemma 3. While we need only consider $q>2$, we will prove the lemma for all $q, 1 \leqslant q \leqslant \infty$. This will follow from the special cases $q=1$ and $q=\infty$. For $q=1$, we have

$$
\begin{aligned}
\left|\frac{e^{-t}}{R^{2}+1}\right|_{1} & =\int_{0}^{\infty} \frac{e^{-t} d t}{\left(\epsilon e^{t+1}\right)^{-2}+1}=\int_{0}^{\infty} \frac{e^{t} d t}{(e \epsilon)^{-2}+e^{2 t}} \\
& \leqslant \int_{-\infty}^{\infty} \frac{e^{t} d t}{(e \epsilon)^{-2}+e^{2 t}}=\frac{\pi}{2} e \epsilon
\end{aligned}
$$

For $q=\infty$,

$$
\left\|\frac{e^{-t}}{R^{2}+1}\right\|_{\infty}=\left\|\frac{e^{t}}{(e \epsilon)^{-2}+e^{2 t}}\right\|_{\infty}=\frac{e \epsilon}{2}
$$

by straightforward differentiation. Thus the lemma is proven.
Proof of Proposition 1. We first consider $F(z)=\int_{0}^{\infty} e^{-z x} H(x) d x$. Let $z=u+i v$, by Hölder's Inequality

$$
|F(z)| \leqslant\left(\int_{0}^{\infty} e^{-p u x} d x\right)^{1 / p} \leqslant u^{-1 / p}
$$

If we restrict ourselves, then, to $\{|z|=R: \operatorname{Re} z \geqslant \delta\}$ and recall

$$
F\left(a_{k}\right)=F\left(\lambda_{k}+\frac{1}{p}\right)=0, \quad k=1,2, \ldots, n
$$

we can use the usual Blaschke estimates to show

$$
\left|\frac{F(z)}{B(z)}\right| \leqslant \delta^{-1 / p} / \inf _{\operatorname{Re} z \delta \delta}|B(z)|, \quad \text { where } \quad B(z)=\prod_{k=1}^{n} \frac{a_{k}-z}{a_{k}+z}
$$

But clearly

$$
\inf |B(z)|=\prod_{k=1}^{n} \frac{a_{k}-\delta}{a_{k}+\delta}=\prod_{k=1}^{n}\left(1-\frac{2 \delta}{a_{k}+\delta}\right)
$$

By the standard technique equating products of the form $\pi\left(1-\alpha_{k}\right)$ with exponentials $\exp \left(-\sum \alpha_{k}\right)$, we have

$$
\begin{aligned}
\inf |B(z)| & \geqslant A_{3} \exp \left(-2 \delta \sum \frac{1}{a_{k}+\delta}\right) \\
& \geqslant A_{3} \exp \left(-2 \delta \sum \frac{1}{\lambda_{k}}\right) \\
& =A_{3} \epsilon^{\delta} .
\end{aligned}
$$

Hence

$$
|F(z)| \leqslant A_{3}^{-1} \delta^{-1 / p} \epsilon^{-\delta}|B(z)|,
$$

and by Lemma 1, we have

$$
|F(z)| \leqslant A_{4} \delta^{-1 / v} \epsilon^{-\delta}\left(e^{3 / 4} \epsilon|z|\right)^{\operatorname{Re} z}
$$

Setting $\delta=1 /|\log \epsilon|$, we obtain

$$
\begin{equation*}
|F(z)| \leqslant A_{5}|\log \epsilon|^{1 / p}\left(e^{3 / 4} \epsilon|z|\right)^{\mathrm{Re} z} \quad \text { as long as } \quad \operatorname{Re} z \geqslant \frac{1}{|\log \epsilon|} \tag{3}
\end{equation*}
$$

Finally, we turn to $K(t)$. Clearly,

$$
\left.K(t)\left|\leqslant \frac{1}{2 \pi} \int_{C}\right| \frac{e^{z t} F(z)}{z-1 / p}\left(1-z^{4} R^{-4}\right)\left(1-p^{-4} R^{-4}\right)^{-1} d z \right\rvert\,
$$

Furthermore, since $t<\log (6 \epsilon)_{\text {, }}, R>2$ so that

$$
\left|1-p^{-4} R^{-4}\right|^{-1}<2 \quad \text { and } \quad \frac{1}{|z-1 / p|}<\frac{2}{|z|} .
$$

Hence,

$$
|K(t)|<\frac{2}{\pi} \int_{C}\left|\frac{e^{z t} F(z)}{z}\left(1-z^{4} R^{-4}\right) d z\right|
$$

In order to further estimate $K(t)$, we split the contour C into

$$
C_{1}=\left\{|z|=R: \operatorname{Re} z=u \geqslant \frac{1}{|\log \epsilon|}\right\} \quad \text { and } \quad C_{2}=C-C_{1} .
$$

We have, integrating over C_{1},

$$
\begin{aligned}
J_{1} & =\int_{C_{1}}\left|\frac{e^{z i} F(z)}{z}\left(1-z^{1} R^{-4}\right) d z\right| \\
& \leqslant A_{5}|\log \epsilon|^{1 / p} \int_{C_{1}}\left|\frac{\left(e^{3 / 4} \epsilon|z|\right)^{\mathrm{Re} z} e^{z t}}{z}\left(1-z^{4} R^{-4}\right) d z\right| \quad \text { by (3). }
\end{aligned}
$$

But $|z|=R=\left(\epsilon e^{t+1}\right)^{-1}$, hence

$$
J_{1} \leqslant A_{5}|\log \epsilon|^{1 / p} \int_{C_{1}}\left|\frac{e^{-4} z}{z}\left(1-z^{4} R^{-4}\right) d z\right|
$$

and

$$
\begin{equation*}
J_{1} \leqslant A_{6} \frac{\log \epsilon i^{1 / p}}{R^{2}+1} \quad \text { by Lemma } 2 . \tag{4}
\end{equation*}
$$

Over C_{2}, we set $z=R e^{i \theta}$ so that $\left|1-z^{4} R^{-4}\right\rangle=4|\sin \theta| \cos \theta$, and we use the fact that $|F(z)| \leqslant u^{-1 / p}=|R \cos \theta|^{-1 / p}$ to obtain

$$
\begin{aligned}
J_{2} & =\int_{C_{2}}\left|\frac{e^{z t} F(z)}{z}\left(1-z^{4} R^{-4}\right) d z\right| \\
& \leqslant 8 \int_{\theta_{1}}^{\pi / 2} \frac{e^{t R \cos \theta} \cos \theta \sin \theta}{(R \cos \theta)^{1 / 2}} d \theta \quad \text { with } \quad \theta_{1}=\sec ^{-1}(|\log \epsilon| R)
\end{aligned}
$$

Setting $\cos \theta=s$,

$$
J_{2} \leqslant 8 \int_{0}^{(|\log \epsilon| R)^{-1}} e^{R t s} s(R s)^{-1 / p} d s
$$

Now, $R s<1 /|\log \epsilon|$ and if we reinvoke the condition $t<-\log (6 \epsilon)<$ $|\log \epsilon|$, we have Rts <1 and

$$
J_{2} \leqslant A_{7} \int_{0}^{\left(\left|\left|\log _{\mathrm{\epsilon}}\right| R\right)^{-1}\right.} s^{1 / q} R^{-1 / p} d s
$$

Considering, then, the maximum of the integrand and the length of the interval gives

$$
\begin{equation*}
J_{2} \leqslant \frac{A_{8}}{|\log \epsilon|^{1+1 / q} R^{2}} \leqslant A_{9} \epsilon^{2} e^{2 t} . \tag{5}
\end{equation*}
$$

Finally, $|K(t)| \leqslant J_{1}+J_{2}$, so that by (4) and (5), we have

$$
\left|e^{-t} K(t)\right| \leqslant A_{6} \frac{|\log \epsilon|^{1 / p} e^{-t}}{R^{2}+1}+A_{9} \epsilon^{2} e^{t}
$$

Taking the L^{q} norm of the above (restricting ourselves to $[0, \mid \log (6 \epsilon)]$), we have

$$
\left\|e^{-t} K(t)\right\|_{q} \leqslant A_{6}|\log \epsilon|^{1 / p}\left|\frac{e^{-t}}{R^{2}+1}\right|_{q}+A_{9} \epsilon^{2}\left(\int_{0}^{|\log \sigma \epsilon|} e^{q t} d t\right)^{1 / q}
$$

Hence, by Lemma 3 and direct integration, we have

$$
\begin{aligned}
\left\|e^{-t} K(t)\right\|_{q} & \leqslant A_{10}\left[|\log \epsilon|^{1 / p} \epsilon+\epsilon\right] \\
& \leqslant A \epsilon|\log \epsilon|^{1 / p},
\end{aligned}
$$

and the proof is complete.

3. A Lower Bound for I_{p}

Throughout this section, we will find it necessary to modify Λ by translating the exponents or adding a single monomial. Hence, we introduce the following notation:

$$
\begin{aligned}
\Lambda_{a} & =\left\{1, x^{\lambda_{1}+a}, x^{\lambda_{2}+a}, \ldots, x^{\lambda_{n}+a}\right\} \\
\Lambda_{a}^{\lambda} & =\left\{1, x^{\lambda}, x^{\lambda_{1}+a}, \ldots, x^{\lambda_{n}+a}\right\}
\end{aligned}
$$

We also define $d_{p}(f, \Lambda)$ to be the L^{p} distance of the function f to the space [Λ]:

$$
d_{p}(f, \Lambda)=\inf _{O \in[\Lambda]}\|f-Q\|_{p}
$$

where $\left\|\|_{p}\right.$ here and throughout the rest of the paper will denote the usual L^{p} norm on $[0,1]$. Using the above notation, we will prove the following key lemmas.

Lemma 1. Suppose $0<\delta<\frac{1}{5}$. Then there exist positive constants A_{1} and A_{2} such that

$$
\begin{align*}
d_{2}\left(x^{1 / 2+\delta}, A\right) \geqslant A_{1} \epsilon^{1+\delta} \tag{A}\\
d_{2}\left(x^{1 / 2+\delta}, A_{a}{ }^{\lambda}\right) \geqslant A_{2} \delta \epsilon^{1+\delta} \quad \text { as long as } \quad a \geqslant-1, \quad\left|\lambda-\frac{1}{2}-\delta\right|>\delta . \tag{B}
\end{align*}
$$

Lemma 2. Let $a \geqslant 0, \alpha=1 /|\log \epsilon|$. Then there exists $A>0$ such that

$$
d_{\infty}\left(x^{1+\alpha}, A_{a}^{b}\right) \geqslant A \frac{\epsilon}{|\log \epsilon|^{3 / 2}} \quad \text { as long as } \quad|b-1-\alpha| \geqslant \alpha
$$

Proof of Lemma 1. First of all, an exact formula for $d_{2}\left(x^{N}, \Lambda\right)$ is given by $d_{2}\left(x^{N}, \Lambda\right)=\frac{N}{(N+1) \sqrt{2 N+1}} \prod_{k=1}^{n}\left|\frac{\lambda_{k}-N}{\lambda_{k}+N+1}\right|$ (e.g., see [1], p. 20). (6)

Setting $N=\frac{1}{2}+\delta$ and replacing the above product with the appropriate exponential, we have

$$
\begin{aligned}
d_{2}\left(x^{1 / 2+\delta}, \Lambda\right) & \geqslant A_{1} \exp \left(-2 \sum(1+\delta) /\left(\lambda_{k}+\frac{3}{2}+\delta\right)\right) \\
& \geqslant A_{2} \epsilon^{1+\delta}
\end{aligned}
$$

This proves (A). Furthermore, considering (6) once again with $N=\frac{1}{2}+\delta$ and translating the λ_{k} by a, we see that the only possible smaller factor introduced is

$$
\frac{\lambda_{1}+a-\frac{1}{2}-\delta}{\lambda_{1}+a+\frac{3}{2}+\delta} .
$$

But $\lambda_{1} \geqslant 2, a \geqslant-1$ and $\delta<\frac{1}{5}$, hence

$$
\frac{\lambda_{1}+a-\frac{1}{2}-\delta}{\lambda_{1}+a+\frac{3}{2}+\delta} \geqslant \frac{\frac{1}{2}-\delta}{\frac{3}{2}+\delta} \geqslant \frac{1}{10} .
$$

Finally, adding the single monomial x^{λ} to Λ introduces a factor of

$$
\frac{\lambda-\frac{1}{2}-\delta}{\lambda+\frac{3}{2}+\delta} \geqslant \delta
$$

by hypothesis. Hence the lemma is proven.
Proof of Lemma 2. Suppose $\left\|x^{1+\delta}-Q(x)\right\|_{\infty} \leqslant m$ where $Q(x) \in \Lambda_{a}{ }^{b}$, $a \geqslant 0,|b-1-\delta| \geqslant \delta$. Then

$$
I=\int_{0}^{1}\left|x^{1+\delta}-Q(x)\right|^{2} \frac{d x}{x^{1-2 \delta}} \leqslant \frac{m^{2}}{2 \delta}
$$

But

$$
\begin{aligned}
I & =\int_{0}^{1}\left(x^{1 / 2+2 \delta}-Q^{*}(x)^{2} d x \geqslant\left[d_{2}\left(x^{1 / \mathbf{2}+2 \delta}, \Lambda_{a+\delta-1 / 2}^{b+\delta-1 / 2}\right)\right]^{2}\right. \\
& \geqslant A \delta^{2} \epsilon^{2+4 \delta} \quad \text { by Lemma } 1
\end{aligned}
$$

Hence,

$$
m \geqslant \delta^{3 / 2} \epsilon^{1+2 \delta} \quad \text { and setting } \quad \delta=\alpha=\frac{1}{|\log \epsilon|}
$$

gives the result.
For later purposes, we note that setting $\delta=2 \alpha$ would yield

$$
d_{\infty}\left(x^{1+2 \alpha}, \Lambda_{a}{ }^{b}\right) \geqslant A \frac{\epsilon}{|\log \epsilon|^{3 / 2}}
$$

as long as the appropriate condition $|b-1-2 \alpha| \geqslant \alpha$ is satisfied.
We are now ready to prove

Proposition 2.

$$
\begin{align*}
& I_{1} \geqslant A \frac{\epsilon}{|\log \epsilon|^{3 / 2}} \\
& \text { For all } p \geqslant 1, \quad I_{p} \geqslant A \frac{\epsilon}{|\log \epsilon|^{5 / 2}} .
\end{align*}
$$

Proof of (A^{\prime}).
Let $\alpha=1 /|\log \epsilon|$ as above. We use the fact that $x^{\alpha} \in S_{1}$ and hence $I_{1} \geqslant d_{1}\left(x^{\alpha}, A\right)$.

Suppose then that $\left\|x^{\alpha}-p(x)\right\|_{1} \leqslant m$. Let $I(x)=\left|\int_{0}^{x}\left[t^{\alpha}-p(t)\right] d t\right|$, then for all $x \in[0,1], I(x) \leqslant \int_{0}^{1}\left|t^{\alpha}-p(t)\right| d t \leqslant m$. But for some x,

$$
\begin{aligned}
I(x) & =\left|x^{1+\alpha}-Q(x)\right| \geqslant d_{\infty}\left(x^{1+\alpha}, \Lambda_{1}^{1}\right) \\
& \geqslant A \frac{\epsilon}{|\log \epsilon|^{3 / 2}} \quad \text { by Lemma } 2 .
\end{aligned}
$$

A consideration of the two inequalities, then, proves $\left(A^{\prime}\right)$.
Proof of (B^{\prime}).
Here we use the fact that $f_{p}=\frac{1}{2} \alpha^{1 / p} \chi^{1 / n+\alpha} \in S_{p}$, where α is as before and $q=p /(p-1)$ is the conjugate of p. Let us assume then that

$$
\left\|x^{1 / q+\alpha}-Q(x)\right\|_{\mathfrak{p}} \leqslant m .
$$

Then

$$
\begin{array}{rlr}
I(x) & =\left|\int_{0}^{x} \frac{\left[t^{1 / q+\alpha}-Q(t)\right]}{t^{1 / q-n}} d t\right| \leqslant & \quad \operatorname{li} t^{1 / q+n} \cdots Q \\
& \leqslant m \cdot x^{-1 / q} . & \text { by Hölder’s Inequality }
\end{array}
$$

But for some x,

$$
I(x)=\left|\frac{x^{1+2 \alpha}-Q^{*}(x)}{1+2 \alpha}\right| \geqslant \frac{1}{2} d_{\infty}\left(x^{1+2 \alpha}, A_{\alpha+1 / p}^{\alpha+1 / p}\right) .
$$

By the note following Lemma 2, then, we have

$$
m \geqslant A \alpha^{1 / q} \frac{\epsilon}{|\log \epsilon|^{3 / 2}}
$$

Since $d_{p}\left(f_{p}, \Lambda\right)=\left(\alpha^{1 / p} / 2\right) d_{p}\left(x^{1 / q+x}, \Lambda\right)$ we have

$$
d_{p}\left(f_{p}, A\right) \geqslant A \alpha^{1 / p+1 / q} \frac{\epsilon}{|\log \epsilon|^{3 / 2}}=A \frac{\epsilon}{|\log \epsilon|^{5 / 2}}
$$

and the proof is complete.

References

1. N. I. Achifser, "Theory of Approximation," Frederick Ungar, New York, 1956.
2. J. Bak and D. J. Newman, Müntz-Jackson Theorems in $L^{p}[0,1]$ and $C[0,1]$, Amer. J. Math., April 1972, pp. 437-457.

[^0]: ${ }^{1}$ This paper is part of the author's doctoral dissertation at Yeshiva University.
 ${ }^{2}$ Research supported in part by U. S. Air Force Grant No. AF 69-1736.

