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1. INTRODUCTION

Let A = {I, X\l, X A2 , ... , xAn } where the Ak are positive numbers satisfying
the growth condition Ak ~ 2k. We seek to estimate the degree of approxi
mation possible to functions in the spaces U[O, I], I ~ p < 2, by poly
nomials in the span [A] of A. To be more precise, we introduce the following
sequence of definitions:

U = LP[O, 1],

ilfllp is the usual LP norm of a functionfE LP,

Wp(J; 8) = sup ilf(x + h) - f(x)l!p ,
Ihl ";;8

Sp ~= {fE U: lif' dp ~ I},

I p = max min Ilf - Q lip.
{ESp QE[A]

In short, Sp represents a class of smooth functions in LP, and I p measures the
degree of approximation possible to functions in Sp. Sp may be called a
"fundamental class," and I p the LP approximation index by virtue of the
following proposition.

1 This paper is part of the author's doctoral dissertation at Yeshiva University.
2 Research supported in part by U. S. Air Force Grant No. AF 69-1736.
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PROPOSITION. Suppose I p ~ YJ. Then, for anyfE LP, there exists afunction
Q E [A] such that

Proof See [2].

Our goal, then, is to estimate I p •

We note first that the analogous problem has been completely solved in the
LP spaces, 2 ~ p ~ 00. (Loo denotes the space of continuous functions
e[O, 1] with the uniform norm.) The result there is:

THEOREM. For all p, 2 ~ p ~ 00,

BE ~ I p ~ AE,

where A and B are absolute positive constants and

(1)

Proof See [2].

Unfortunately, the problem at hand does not seem to be solvable by any
"duality principle." Furthermore, the methods used in [2] involve certain
inequalities which are applicable only in the cases p ~ 2. Nevertheless, our
conjecture is that (1) holds for all p; the results contained in this paper show
that I p is, in any case, "roughly speaking" E. We will prove, namely:

THEOREM 1. For all p, 1 ~ P < 2, BE/I log E [5/2 < I p ~ AE I log E II/P,

where A and B are absolute positive constants and E = (-2 L~I (1jA'k)) as
before.

The approach used to obtain the upper bound in Theorem I is a combi
nation of estimates contained in [2] and the straightforward evaluation of a
critical contour integral. To obtain the lower bound, we use a very elementary
and direct approach: we exhibit a function fp (in fact, a monomial) in each
class Sp which cannot be approximated better than the stated lower bound.

2. AN UPPER BOUND FOR I p

In this section, Ilfllq will denote the P norm on [0, (0), unless otherwise
specified. Let HE prO, (0), q = p/(p - 1) with II H Ilq ~ 1 and such that

F(z) = fOO e-ZXH(x) dx = °
o

1
for z = Ak + -, k = 1, 2,... , n.

p
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where C = {z = R: Re z O}, R c= (Eetl)-l and E is as above. The
following upper bound was derived in [2]:

For all p, I :s:; p 00,

(2)

where the latter norm may be evaluated on the subinterval [0, Ilog(6E)I]. We
wish to prove

PROPOSITION I. For all p, I :s:; p < 2, I p :s:; AE I log E IIIP.

By (2), it suffices to show

on [0, Ilog(6E)I] :s:; AE I log E IIIP

for some constant A. Towards that end, we record three lemmas, the first
two of which were proven in [2].

LEMMA I. Let ak = Ak + lip, B(z) = TI~~l (ak - z)/(ak + z), the Blaschke
product with zeros ak . Then I B(z)1 :s:; 2(e3/4E I z IV ez •

LEMMA 2. For all A ~ 0, C = {I z I = R, Re z ~ O}

LEMMA 3. Again, let R = (Eet+l)-l.

Proof of Lemma 3. While we need only consider q > 2, we will prove the
lemma for all q, 1 :s:; q :s:; oo. This will follow from the special cases q = 1
and q = oo. For q = I, we have



For q = 00,
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eE

2

by straightforward differentiation. Thus the lemma is proven.

Proof of Proposition 1. We first consider F(z) = f: rZXH(x) dx. Let
z = u + iv, by Holder's Inequality

(

.00 )l/P
[F(z)[ ~ J e-PUX dx ~ u-l

/
p

•

o

If we restrict ourselves, then, to {I z I = R: Re z ~ 8} and recall

k = 1,2,... , n

we can use the usual Blaschke estimates to show

IF(z) I~ 8-l / P/ inf I B(z)I
B(z) Rez~5'

But clearly

n ° _ z
where B(z) = Il~+ .

k~l Ok Z

. rrn ak - 8 rrn ( 28)
lllf I B(z)[ = k~l ak + 8 = k~l I - Ok + 8 .

By the standard technique equating products of the form 17"(1 - CXk) with
exponentials exp(- L CXk), we have

inf I B(z)I ~ As exp (-28 I Ok ~ 8)

~ A 3 exp (-28 L JJ
= AsEo.

Hence

and by Lemma I, we have

IF(z)/ ~ A48-l/pc5(es/4E I Z I)Rez.

Setting 8 = III log E I, we obtain

IIF(z) I ~ As I log E Il/P (eS/4E Iz J)Rez as long as Re z ~ Ilog~' (3)
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Finally, we turn to K(f). Clearly,

! KU)!

Furthermore, since t < log(6E)" R 2 so that

and
I 2

z - lip I < TZT .
Hence,

I K(f)1 < 2 r I eZiF(z) (l - z4R-4) dz I.
n . c z

In order to further estimate K(t), we split the contour C into

CI = II z I = R: Re z = u

We have, integrating over C1 ,

1 I
!Ilog E! \

and

But i z I = R = (EeHI)-\ hence

JI :S; A 5 [log E II/JI J I e-
lz

(l - z4R-4) dz I
c

1
• Z

and

by Lemma 2. (4)

Over C2 , we set z = ReiB so that I I - z4R-4 i = 4 I sin e I cos e, and we
use the fact that IF(z)i :S; U-1/1l .~~ I R cos e I-I/JI to obtain

J2 = Ie. I ezt~(z) (1 - z4R-4) dz I

J
'" 12 etRCOS8 cos esin e

<: 8 de
~ 8

1
(R cos e)I/Jl

Setting cos e = s,

with el = sec-I(llog € I R)
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Now, Rs < 1/1 log E I and if we reinvoke the condition t < -10g(6E) <
I log E[, we have Rts < 1 and

f
(1logEI Rj-l

J2 :'( A
7

sl/qR-l/p ds.
o

Considering, then, the maximum of the integrand and the length of the
interval gives

(5)

Finally, I K(t)1 :'( Jl + J2 , so that by (4) and (5), we have

Taking the U norm of the above (restricting ourselves to [0, ! 10g(6E)iJ), we
have

I
e-t I (fllOg6Ei )l/qII e-tK(t)[[q :'( A6 [ log E [lIP R2 + 1 q + A gE

2 0 eqt dt •

Hence, by Lemma 3 and direct integration, we have

II rtK(t)[lq :'( A lO [[ log E [lIP E+ E]

:'( AE [logE Il/p,

and the proof is complete.

3. A LOWER BOUND FOR I p

Throughout this section, we will find it necessary to modify A by translating
the exponents or adding a single monomial. Hence, we introduce the following
notation:

A a = {I, X A,+a
, X A2+a

, ... , x An+a
},

A a
A = {I, x\ X A1+a

, ••• , xAn+a
}.

We also define dif, A) to be the LP distance of the functionfto the space [A]:

dif, A) = inf II f - Q [Ip ,
QE[A]

where I[ lip here and throughout the rest of the paper will denote the usual LP
norm on [0, 1]. Using the above notation, we will prove the following key
lemmas.
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LEMMA I. Suppose 0 < 8 < },. Then there exist positive constants Al and
A 2 such that

(A)

LEMMA 2. Let a ~ 0, ex c= III log E I. Then there exists A > 0 such that

Proof of Lemma 1. First of all, an exact formula for d2(XN , A) is given by

dlxN
, A) = ~ .. fI IA ~ ~ ~ 1 I (e.g., see [I], p. 20). (6)

(N + 1) 2N + 1 k~1 k

Setting N = t + 8 and replacing the above product with the appropriate
exponential, we have

d2(x1j2
+8, A) ~ Al exp (-2 L (1 + 8)/(Ak + l + 8))

~ A 2E1+8.

This proves (A). Furthermore, considering (6) once again with N = t + 8
and translating the Ak by a, we see that the only possible smaller factor
introduced is

Al + a - l- 8
Al + a + l + 8

But Al ~ 2, a ~ -1 and 8 < i, hence

A +a- 1 -8 .1-8 11 2 >: _2__ >:_
Al + a + ~ + 8 ;/' l + 8 ;/' 10'

Finally, adding the single monomial x' to A introduces a factor of

A-1-8
2 >: 8

A+~+8;/'

by hypothesis. Hence the lemma is proven.

Proof of Lemma 2. Suppose II xl+6 - Q(x)lloo ~ m where Q(x) E Aab,
a ~ 0, I b - 1 - 8 I ~ 8. Then

_ Jl 1+6 _ 2~ m2
I - 0 I x Q(x)I X I - 26 ~ 28 .
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But

1= r(X1l2+26 - Q*(X)2 dx ? [d2(X1l2+26, A~tt~jm2
o

? A82E2+46 by Lemma 1.

Hence,
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1and setting 8 = ex = --;-;------,-
[log E I

gives the result.
For later purposes, we note that setting 8 = 2ex would yield

as long as the appropriate condition I b - 1 - 2ex I ? ex is satisfied.
We are now ready to prove

PROPOSITION 2.

E

II ? A I log E 13/2 •

E
For all p ? 1, I p ? A .

I log E 15 / 2

Proof of (A').

(A')

(B')

Let ex = 1/1 log E I as above. We use the fact that x" E SI and hence
II ? d1(x", A).

Suppose then that II x" - p(x)lll ~ rn. Let I(x) = I f~ [t" - p(t)] dt I, then
for all x E [0, 1], I(x) ~ f~ I t" - p(t)1 dt ~ m. But for some x,

I(x) = I x1+<> - Q(x)I ? d",(x1+<>, Al)

E

? A I log E 13 / 2 by Lemma 2.

A consideration of the two inequalities, then, proves (A').

Proof of (8').

Here we use the fact thatfp = tex1/PX1/H <> ESp, where ex is as before and
q = p/(p - 1) is the conjugate of p. Let us assume then that

II x1fq+<> - Q(x)llv ~ m.
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But for some x,

by Holder's Inequality

By the note following Lemma 2, then, we have

'> A l/q E
m;:--- ex, I log E 13/2 .

dp(fp , A) ~ Aex1/P+l/q E = A E
[log E 13 / 2 [log E 15 / 2

and the proof is complete.
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